stepwise method - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

stepwise method - traduzione in russo

Schrodinger method; Schroedinger method; Schrodinger's method; Schroedinger's method; Schrödinger's method

stepwise method      

математика

последовательный метод

stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)

['stepwaiz]

общая лексика

поэтапный

скачком

ступенчато

ступенчатый

медицина

постепенный

Смотрите также

stepwise approximation; stepwise change; stepwise discontinuity; stepwise estimation; stepwise maximization; stepwise method; stepwise minimization; stepwise process; stepwise quadrature; stepwise regression

наречие

общая лексика

уступами

в виде ступенек

ступеньками

постепенно

поэтапно

stepwise         
WIKIMEDIA DISAMBIGUATION PAGE
Stepwise (disambiguation)
шаг за шагом

Definizione

class method
<programming> A kind of method, available in some object-oriented programming languages, that operates on the class as a whole, as opposed to an object method that operates on an object that is an instance of the class. A typical example of a class method would be one that keeps a count of the number of objects of that class that have been created. (2000-03-22)

Wikipedia

Schrödinger method

In combinatorial mathematics and probability theory, the Schrödinger method, named after the Austrian physicist Erwin Schrödinger, is used to solve some problems of distribution and occupancy.

Suppose

X 1 , , X n {\displaystyle X_{1},\dots ,X_{n}\,}

are independent random variables that are uniformly distributed on the interval [0, 1]. Let

X ( 1 ) , , X ( n ) {\displaystyle X_{(1)},\dots ,X_{(n)}\,}

be the corresponding order statistics, i.e., the result of sorting these n random variables into increasing order. We seek the probability of some event A defined in terms of these order statistics. For example, we might seek the probability that in a certain seven-day period there were at most two days in on which only one phone call was received, given that the number of phone calls during that time was 20. This assumes uniform distribution of arrival times.

The Schrödinger method begins by assigning a Poisson distribution with expected value λt to the number of observations in the interval [0, t], the number of observations in non-overlapping subintervals being independent (see Poisson process). The number N of observations is Poisson-distributed with expected value λ. Then we rely on the fact that the conditional probability

P ( A N = n ) {\displaystyle P(A\mid N=n)\,}

does not depend on λ (in the language of statisticians, N is a sufficient statistic for this parametrized family of probability distributions for the order statistics). We proceed as follows:

P λ ( A ) = n = 0 P ( A N = n ) P ( N = n ) = n = 0 P ( A N = n ) λ n e λ n ! , {\displaystyle P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n)P(N=n)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n}e^{-\lambda } \over n!},}

so that

e λ P λ ( A ) = n = 0 P ( A N = n ) λ n n ! . {\displaystyle e^{\lambda }\,P_{\lambda }(A)=\sum _{n=0}^{\infty }P(A\mid N=n){\lambda ^{n} \over n!}.}

Now the lack of dependence of P(A | N = n) upon λ entails that the last sum displayed above is a power series in λ and P(A | N = n) is the value of its nth derivative at λ = 0, i.e.,

P ( A N = n ) = [ d n d λ n ( e λ P λ ( A ) ) ] λ = 0 . {\displaystyle P(A\mid N=n)=\left[{d^{n} \over d\lambda ^{n}}\left(e^{\lambda }\,P_{\lambda }(A)\right)\right]_{\lambda =0}.}

For this method to be of any use in finding P(A | N =n), must be possible to find Pλ(A) more directly than P(A | N = n). What makes that possible is the independence of the numbers of arrivals in non-overlapping subintervals.

Traduzione di &#39stepwise method&#39 in Russo